

On Evaporation and Dissociation. Part VIII. A Study of the Thermal Properties of Propyl Alcohol

William Ramsay and Sydney Young

Phil. Trans. R. Soc. Lond. A 1889 180, 137-158

doi: 10.1098/rsta.1889.0004

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

137

IV. On Evaporation and Dissociation.—Part VIII. A Study of the Thermal Properties of Propyl Alcohol.

> By Professor William Ramsay, Ph.D., F.R.S., and Professor Sydney Young, D.Sc.

> > Received June 14,—Read June 21, 1888.

[Plates 3-7.]

In continuation of our investigations of the thermal properties of pure liquids, we have now determined the vapour-pressures, vapour-densities, and expansion in the liquid and gaseous states, of Propyl Alcohol, and from these results we have calculated the heats of vaporization at definite temperatures. The range of temperature is from 5° to 280°, and the range of pressure from 5 mms. to 56,000 mms.

Preparation of pure Propyl Alcohol.—A sample of propyl alcohol was procured from Kahlbaum, of Berlin. It was dried with barium oxide, and then with small quantities of sodium; but in this case the results were not nearly so satisfactory as with methyl and ethyl alcohol, for propyl alcohol is soluble in water, forming a mixture or "hydrate," which boils constantly at a lower temperature than the pure It is not completely decomposed by sodium, and can be separated only by repeated fractional distillation. This hydrate was first described by Chancel ('Comptes Rendus, vol. 68, 1867, p. 659), who, observing that it boiled with perfect constancy, assumed that it possessed a definite composition, and gave it the formula C₃H₈O, H₂O. It has more recently been examined by Konowalow (Wiedemann's 'Annalen,' vol. 14, 1881, p. 34), who has determined the vapour-pressures of varying mixtures of propyl alcohol and water at definite temperatures. Konowalow finds that the composition of the mixture, the vapour of which exerts the greatest pressure, is not the same at different temperatures, but that the mixture contains more alcohol at high temperatures than at low. From this it has been concluded that the composition of the "hydrate" must depend on the pressure under which the liquid is distilled. have proved experimentally that this is the case (but we reserve a discussion of this interesting substance for a future paper), and we give the results of our experiments in an Addendum to this paper.

After repeated fractionation we succeeded in obtaining a quantity of propyl alcohol MDCCCLXXXIX.—A. 30.3.89

which boiled almost constantly at 97°.6 (the rise of temperature during distillation being less than 0°·1) under a pressure of 763.8 mms. This sample was employed for the determination of vapour-pressures at low temperatures, and for the constants at high temperatures with quantities A, B, and D (see p. 140).

The specific gravity of the alcohol was determined several months later, and a fresh quantity of the alcohol was prepared from the hydrate into which the greater part of the alcohol had been converted. The hydrate was treated with dry potassium carbonate, when, as described by Chancel (loc. cit.), two layers were formed, the lower one being an aqueous solution of potassium carbonate, the upper one consisting The alcohol was fractionated several times, of the partially hydrated alcohol. potassium carbonate being each time added to the most volatile distillate, until a quantity was obtained, boiling from 97°.1 to 97°.15 under a pressure of 752 mms.

For the determinations of vapour-density at high temperatures with quantity C, the alcohol was refractionated. The portion employed boiled constantly at 97°·1 under a pressure of 750.6 mms.

Reduced to 760 mms. these temperatures would be (1) 97°·45; (2) 97°·4; (3) 97°·4. The boiling-point of propyl alcohol has been determined by numerous experimenters, and the results obtained by several are very concordant; the most reliable appear to be the following:

Observer.	Reference.	Pressure.	Temperature.	Temperature reduced to 760 mms.
BRÜHL ZANDER LINNEMANN SCHIFF KONOWALOW	'Annalen der Chemie,' vol. 200, p. 173	752·2 760·0 760·0 752·4 749·2	97-97·2 97·40 97·41 97·10 97·00	97·35 97·40 97·41 97·35 97·37

PIERRE and Puchot ('Annales de Chimie,' vol. 22, 1871, p. 276) found 98°; and PERKIN ('Chem. Soc. Trans.,' vol. 45, p. 446) gives two determinations: 97°.5 to 98°.5 and 98°, but the boiling-point of the alcohol employed in the final determination of specific gravity is not stated.

Apparatus employed.—The apparatus employed was the same as that described in our memoir on Ethyl Oxide ('Phil. Trans.,' A, 1887, p. 57).

EXPERIMENTAL RESULTS.

Vapour-Pressures at Low Temperatures.—These were determined by our dynamical The thermometer had been standardized by determinations of the vapourpressures of water; its zero point was redetermined.

TABLE I.

Pressure.	Temperature.	Pressure.	Temperature.	Pressure.	Temperature.
mms. 5·25 5·10 5·25 6·10 7·25 8·70 9·20 10·55 13·30 16·40	5.5 4.9 5.5 7.5 9.7 12.8 13.4 15.6 18.7	mms. 34·5 42·05 50·05 57·55 67·6 79·7 94·6 110·95 130·8 151·85	33·7 36·95 40·0 42·3 45·2 48·2 51·4 54·5 60·5	mms. 235·35 240·1 273·7 312·85 355·8 404·9 455·5 505·6 561·9 615·1	69·5 70·0 72·85 75·85 78·8 81·9 84·6 87·0 89·6 92·0
20·30 24·55 29·35	25·1 28·2 31·1	175·3 201·1 204·8	63·4 66·2 66·7	672·7 760·7	94·3 97·5

These results were plotted on sectional paper, curves drawn through them, and the pressures corresponding to equal intervals of temperature read off.

Specific Gravity of Propyl Alcohol.—A Sprengel's tube of the form recommended by Perkin was employed. The weighings were reduced to a vacuum:—

Weight of water at 16°.	7						15.3169 grms.
Capacity of tube at 16°.	7						15.3339 c.cs.
Weight of alcohol at 0°							12.5577 grms.
Capacity of tube at 0°							15.3275 c.cs.
Specific gravity at 0°					,		0.81929.
Volume of 1 grm. at 0°							1.22056 c.cs.
Weight of alcohol at 10°	·7	2	•				12.4338 grms.
Capacity of tube at 10°.	72						15.3316 c.cs.
Specific gravity at 10°.7	2			•		•	0.81099.
Volume of 1 grm. at 10°	7:	2					1.23306 c.cs.

The results of other observers* are not very easy to compare with ours; some of them are given in terms of water at 0°, others at 4°, and others again at the same

^{*} A tabulated statement of determinations of the boiling-point and specific gravity of propyl alcohol is given by Lossen, 'Annalen der Chemie u. Pharmacie,' vol. 214, p. 105.

temperature as the alcohol. The best method of comparison appears to be to reduce the results of other observers to true densities, and to read from the curve constructed from our observations the densities at the corresponding temperatures. The most reliable results appear to be the following (the references are the same as before):—

Observer.	Specific gravity $rac{t^\circ}{t^\circ}$	Density or $\frac{t^o}{4^o}$	Result from our curve.
Brühl	·8044 20°/4°	·8044 at 20°	·8035
	·8069 17°/0°	·8068 at 17°	·8059
	·8066 15°/15°	·8059 at 15°	·8076
	·80883 15°/15°	·8082 at 15°	·8076
	·80247 25°/25°	·8002 at 25°	·7995
	·7366 97°·1/4°	·7366 at 97°·1	·7353

It will be seen that our results are in close agreement with those of other observers; they are very slightly lower than most of the others, but at 15° our result is rather higher than LINNEMANN'S.

Constants at High Temperatures.—Four different amounts of propyl alcohol were employed for these determinations. The vapour-pressures and the orthobaric volumes and compressibilities of the liquid were determined with the largest quantity, A, the weight of which was calculated from its volume and specific gravity. The smaller quantities, B, C, D, were employed for the determinations of the volumes of a gram of The weight of B was ascertained by comparisons of its volume with that of A under similar conditions of temperature and pressure. The weight of C was obtained in a similar manner from that of B, and the weight of D similarly from that of C.

Weight of quantity A.—The actual volumes of this quantity at various temperatures were plotted on sectional paper, and a curve drawn through the points; the volumes at 0° and 10°.72 were read off, and the weight calculated from the densities at those temperatures.

Volume of 1 grm. at 0° Volume of A at 0° 0.32335. 1.22056. Volume of A at 10°.72. 0.32675. Volume of 1 grm. at $10^{\circ}.72$. 1.23306.

Weight from volume at 0°				Grm. 0°26492
Weight from volume at 10°.72	2			0.26499
Mean				0.26496

Weight of B.	Mean of numerous comparisons with A		0.03763.
Weight of C.	Mean of numerous comparisons with B		0.006015.
Weight of D.	Mean of numerous comparisons with C		0.005180.

Grm

Constants with the largest quantity, A.—The vapour-pressures at each temperature were, as usual, determined at the widest possible limits of volume.

Volume of 1 grm. at $23^{\circ}.7 = 1.2493$. Specific gravity 0.8004.

The pure liquids employed for obtaining constant temperatures were carbon bisulphide, ethyl alcohol, chlorobenzene, bromobenzene, aniline, methyl salicylate, and bromonaphthalene ('Chem. Soc. Trans.,' 1885, p. 640). We think it unnecessary to state in each case the liquid employed and the pressure under which it boiled.

Temperature.	Volume of 1 grm.	Specific gravity. (Weight of 1 c.c.)	Pressure.
30	c.cs. 1·2569	0.7956	mms. 800
	1.2522	••	32,590
40	1.2712	0.7866	800
	1.2659	••	22,910
	1.2612	••	53,480
50	1.2850	0.7782	800
	1.2796		19,730
	1.2743	••	53,4 80
60	1.2992	0.7697	800
	1.2934		23,730
	1.2873	• •	53,4 80
70	1.3137	0.7612	800
•	1.3070	• •	26,210
	1.3017	••	53,480
80	1.3298	0.7520	800
-	1.3274	• •	6,750
	1.3207	• •	29,090
	1.3180	••	53,480
90	1.3742	0.7423	800
	1.3412	••	17,070
	1.3346	, ••	37,970
100	• •	• •	842
			$843 \mid 842 \mid$
			843
		Mean vappress.	= 842.5
	1 3651	0.7326	800
	1.3618	•••	11,510
	1.3550	••	31,910
	1.3483	• •	53,480
110			1,2047
			1,207
			$1,205 \\ 1,207$
		Mean vappress.	= 1,206
	1.3863	0.7214	1,200
	1.3822	• •	7,415
	1.3754	••	27,910
	1.3687	• •	47,4 80

Temperature.	Volume of 1 grm.	Specific gravity. (Weight of 1 c.c.)	Pressure.
120	c.cs.		$ \begin{array}{c} \text{mms.} \\ 1,681 \\ 1,683 \\ 1,684 \\ 1,684 \end{array} $
* *		Mean vappress.	= 1,683
	1·4028 1·3961 1·3894 1·3833	0·7129 	1,684 18,540 35,000 53,490
130	••	••	$\begin{array}{c} 2,292 \\ 2,293 \\ 2,291 \\ 2,302 \end{array} \right\}$
-		Mean vappress.	= 2,295
	1·4292 1·4231 1·4163 1·4097 1·4031	0·6997 	2,300 12,300 26,100 40,290 54,680
140	••	••	$\left. \begin{array}{c} 3,077 \\ 3,071 \\ 3,076 \\ 3,072 \end{array} \right\}$
		Mean vappress.	= 3,074
	1·4572 1·4546 1·4505 1·4439 1·4371 1·4303	0·6875 	1,160 3,074 7,305 20,190 33,430 48,270
150		••	$ \begin{array}{c} 4,053 \\ 4,062 \\ 4,067 \\ 4,054 \end{array} $
·		Mean vappress.	= 4,059
	1·4835 1·4775 1·4708 1·4642 1·4576	0·6741 	4,022 11,250 23,010 35,230 44,690
160		••	$\begin{bmatrix} 5,270 \\ 5,257 \\ 5,272 \\ 5,259 \end{bmatrix}$
		Mean vappress.	= 5,264
	1.5144	0.6603	5,294

Specific gravity. Temperature. Volume of 1 grm. Pressure. (Weight of 1 c.c.) c.cs. mms. 170 6,657 6,720 6,702 6,702Mean vap.-press. = 6,6951.55180.64446,750 1.545814,012 1.5391 22,689 . . 1.5323 1.525629,197 38,919 1.5189 45,898 1.512255,431 180 8,374 8,388 8,387 8,398_ = 8,387Mean vap.-press. 1.5913 8,560 11,810 0.62841.58651.579718,710 . . 1.5730 24,260 31,430 1.5663 1.559638,000 45,750 1.5529 1.549752,510 190 10,488 10,467 10,468 10,441 Mean vap.-press. = 10,4661.63560.6114 10,410 1.634312,020 1.627416,680 1.620622,040 1.6138 26,650 1.6070 32,250 1.600438,020 1.593843,800 1.5869 49,500 200 12,807 12,817 12,831 12,856 Mean vap.-press. = 12,8281.688812,829 16,540 0.59211.6820

1.6753

1.6617

1.6481

1.6346

1.6278

. .

. .

20,030

27,840

36,170

45,710

50,607

Temperature.	Volume of 1 grm.	Specific gravity. (Weight of 1 c.c.)	Pressure.
210	c.cs.	••	$ \begin{array}{c} \text{mms.} \\ 15,525 \\ 15,562 \\ 15,614 \\ 15,599 \end{array} $
		Mean vappress.	=15,575
220	1·7489 1·7435 1·7299 1·7164 1·7028 1·6892 1·6757	0.5718	15,576 $17,910$ $23,680$ $29,580$ $36,050$ $43,240$ $51,690$ $18,626$ $18,633$ $18,692$ $18,712$
		Mean vappress.	= 18,671
230	1·8244 1·8121 1·7985 1·7849 1·7713 1·7576 1·7440 1·7304	0.5481	$18,695 \\ 21,690 \\ 25,710 \\ 29,860 \\ 34,680 \\ 39,970 \\ 45,540 \\ 51,710 \\ 22,108 \\ 22,158 \\ 22,144 \\ 22,234$
		Mean vappress.	= 22,161
240	1·9081 1·8944 1·8808 1·8672 1·8536 1·8399 1·8262 1·8126 1·7990 1·7854	0.5241	22,223 24,870 27,520 30,490 33,900 37,290 41,090 45,170 49,810 54,770 26,204 26,224 26,201
			26,204
		Mean vappress.	= 26,208
	2·0308 2·0182 2·0044 1·9907 1·9632 1·9360 1·9085 1·8812 1·8677	0·4924	26,202 27,160 28,640 30,140 33,860 38,050 43,430 49,340 53,170

Temperature.	Volume of 1 grm.	Specific gravity. (Weight of 1 c.c.)	Pressure.
0	c.cs.		mms.
250	• •	• •	30,729 $)$
			30,725
			30,822
			30,840 J
		Mean vappress.	= 30,779
	2.2093	0.4526	30,831
	2.1989	0 4520	31,160
4 7	$\frac{2.1703}{2.1703}$	• •	32,470
	2.1426	• • •	33,950
	2.1150		35,640
* *	2.0875		37,940
	2.0600		40,390
	2.0327		43,470
	2.0049		47,050
	1.9774	••	51,300
260	••	• •	36,137
			36,087
			36,101
			36,115]
		Mean vappress.	= 36,110
\$ 1 m	2.5601	0.3906	36,115
	2.5468	0 5900	36,221
	2.4770		36,880
	2.4072	• •	38,060
No. 127	2.3375	••	39,560
	2.2680		42,050
	2.1994	4.5	45,380
	2.1294	••	50,560
	2.1018	• •	53,260
263.15	• •	••	37,950
263.5	0.07.00	0.000	38,100
263.54	3 0102	0.3322	38,110
263·64	4.1697	••	38,130
(Critical Temperature)	3·4696 3·0368	••	$38,110 \\ 38,120$
remperature	2.7568	••	38,130
	2.6172	• •	39,170
	2.4773	••	40,760
A 1 F	2.3378		43,970
	2.2682		46,960
	2.1997	• •	50,530
0 - 0	2 1711		52,950
270	4.1702	• •	41,540
	3.7496	· · · · · · · · · · · · · · · · · · ·	41,940
	3.4701	••	42,150
	$3.1770 \\ 2.8973$	• •	42,620
	2·8973 2·7571	••	43,340 44,000
	2.6172	• •	45,480
	2.4776	••	47,760
	2.3381	•••	52,130
	2.2686		55,630
280.1	4.1713		47,000
	3.7505		48,040
	3.4710		48,550
	3.1778	• •	49,730
	2.8981	••	51,54 0
	2.7578	••	53,310
	2.6179		55,510

Second Quantity, B. Weight = 0.03763.

Temperature.	Volume of 1 grm.	Pressure.	Vapour-density.
230	c.cs. 29·34 26·38	$^{ m mms.}$ $14,115$ $15,254$	38·10 39·14
	$egin{array}{c} 24.41 \ 22.35 \end{array}$	$egin{array}{c} 16,\!114 \ 17,\!120 \end{array}$	40·03 41·16
	20.38	18,195	42.46
	$19.40 \\ 18.41$	18, 7 93 19,368	43·20 44·16
	17.43	20,037	45.09
	16.45 15.48	$20,674 \ 21,373$	46·33 47·61
	14.50	21,973	49.39
	Vapour-pressure	= 22,094	
240	29.35	14,602	37.48
	$\begin{array}{c} 26.39 \\ 23.34 \end{array}$	$15,866 \\ 17,356$	38·37 39·65
-	21.37	18,483	40.66
	19:40	19,742	41.93
	$\begin{array}{c} 18.42 \\ 17.43 \end{array}$	$20,376 \\ 21,073$	42·80 43·72
	16.45 ·	21,848	44.68
	$15.48 \\ 14.50$	$22,606 \\ 23,388$	45.89 47.35
	13.54	24,229	48.97
	$\begin{array}{c} 12.58 \\ 11.62 \end{array}$	25,067 $25,869$	50.95 53.44
	Vapour-pressure	= 26,102	00 41
250	29:35	15,098	36.95
	26.39	16,414	37.80
	$23.35 \ 21.38$	18,012 $19,209$	38·94 39·87
-	19.41	20,575	41.01
	$17 \cdot 44 \\ 16 \cdot 46$	$\begin{array}{c c} & 22,126 \\ & 22,897 \end{array}$	$42.44 \\ 43.45$
	15.49	23,811	44:41
	$14.51 \\ 13.54$	$\begin{bmatrix} 24,688 \\ 25,657 \end{bmatrix}$	$45.72 \\ 47.13$
	12.58	26,635	48.87
	$\frac{11.62}{10.67}$	27,658	50.94
	$10.67 \\ 9.72$	$28,725 \\ 29,649$	53·42 56·81
	8.78	30,546	61.10
	Vapour-pressure	= 30,809	
260	29.36	15,647	36.32
	$\begin{array}{c} 26 \cdot 41 \\ 23 \cdot 35 \end{array}$	16,999 18,710	37·18 38·20
-	21.38	19,997	39.03
	$\begin{array}{c} 19.41 \\ 17.44 \end{array}$	$ \begin{array}{c c} 21,424 \\ 23,087 \end{array} $	$\begin{array}{c} 40.13 \\ 41.44 \end{array}$
	15.49	24,939	43.20
	13.54 12.58	27,006 28,178	$45.62 \\ 47.07$
-	11.62	29,367	48.89
	10.67	30,586	51.12

Temperature.	Volume of 1 grm.	Pressure.	Vapour-density.
260	c.cs. 9·72 8·78 7·83 6·88	mms. 31,867 32,961 34,138 35,275	53·85 57·69 62·45 68·75
	6·41 Vapour-pressure	35,646 $= 35,955$	73.06
263·64 (Critical Temperature)	9.73 8.78 7.83 6.88 5.94 4.99 4.05	32,467 33,854 35,224 36,433 37,309 37,940 37,969	53.21 56.54 60.92 67.01 75.85 88.66 109.20
	$3.11 \\ 2.64$	38,068 39,037	141·80 162·70
270	$29 \cdot 37$ $26 \cdot 41$ $23 \cdot 36$ $21 \cdot 39$ $19 \cdot 42$ $17 \cdot 44$	16,098 17,548 19,379 20,744 22,266 24,002	35.96 36.69 37.56 38.32 39.32 40.60
	15.49 13.55 11.63 9.73 7.83	26,076 28,373 30,953 33,807 36,917	$\begin{array}{c} 42.08 \\ 44.23 \\ 47.24 \\ 51.70 \\ 58.81 \end{array}$
	5.94 5.00 4.05 3.11 2.64 2.36	39,765 40,908 41,753 42,824 45,250 51,749	$72.00 \\ 85.13 \\ 98.17 \\ 127.50 \\ 142.00 \\ 139.00$
280·15	$29 \cdot 38$ $26 \cdot 41$ $23 \cdot 36$ $21 \cdot 39$ $19 \cdot 42$ $17 \cdot 45$ $15 \cdot 50$ $13 \cdot 55$	16,572 18,097 19,982 21,417 23,005 24,907 27,073 29,609	35·58 36·23 37·10 37·80 38·76 39·84 41·28 43·16
	11·63 9·73 7·83 5·94 5·00 4·05	32,469 35,803 39,485 43,429 45,290 47,200	45·86 49·72 56·00 67·14 76·53 90·50
	3·59 3·11 2·83	48,304 50,451 52,312	100·00 110·20 116·90

Third Quantity, C. The experiments with this quantity were made with a new pressure apparatus, a new volume-tube, and new pressure-gauges. Fresh samples of methyl salicylate and bromonaphthalene were also employed for heating the tube.

At each temperature the propyl alcohol vapour was made to occupy the largest possible volume, and was left for several hours until the vapour-pressure of mercury had attained its maximum. Readings were taken every half hour to ascertain when the pressure had become constant. The subsequent readings were taken at diminishing volumes.

150	c.cs.		Vapour-density.		
150		mms.			
	172.8	$2,\!359$	32.25		
	$162 \cdot 4$	$2,\!497$	32.41		
	151.9	$\frac{2,657}{2}$	32.57		
	141.4	2,838	32.77		
		2,030 9.044			
	130.8	3,044	33.01		
	120.2	3,281	33.33		
	109.5	$3,\!565$	33.66		
. **	98.5	3,891	34:21		
	Vapour-pressure	= 4,053			
180	172.9	$2,\!554$	32.02		
	152.0	2,884	32.25		
	130.9	$3,\!325$	32.48		
	115.0	3,745	32.84		
		4,295	33.31		
	98.8	4,490			
	82.6	5,043	33.95		
	66.3	6,117	34.80		
	55.4	7,091	36.02		
	49.9	7,721	36.71		
	Vapour-pressure	= 8,365			
200	173.0	2,683	31.67		
	$\overline{152\cdot 1}$	3,033	31.86		
-	131.0	3,492	32.14		
		4100	32.46		
	109.7	4,129			
	93.5	4,786	32.85		
	77.2	5,683	33.51		
	60.9	7,013	34:43		
	49.9	8,309	35.44		
	$\frac{1}{44.5}$	9,136	36.20		
	39.0	10,129	37.24		
			38.63		
	33.5	11,362	90 09		
	Vapour-pressure	= 12,691			
220	173.1	2,813	31.46		
	$152 \cdot 2$	3,182	31.64		
	131.1	3,667	31.88		
		1 0,007 1 09K	32.20		
	109.7	4,335	1		
	93.5	5,035	32.53		
	77.2	5,995	33.09		
	60.9	7,435	33.83		
	49.9	8,850	34.66		
	39.0	10,895	36.07		
	33·5	12,318	37.12		
	ຄວ.∧		38.81		
	28.0	14,123			
	$22 \cdot 4$	16,454	41.56		
	19.6	17,850	43.73		
	Vapour-pressure	= 18,711			

Temperature.	Volume of 1 grm.	Pressure.	Vapour-density.
0	c.cs.	mms.	
230	173.2	2,881	31.34
	162.8	3,053	31.46
	147.0	3,367	31.60
	131.1	3,761	31.70
	115.1	4,252	31.93
	99.0	4,904	32.21
	82.7	5,783	32.69
	$66 \cdot 4$	7,081	33.28
	55.4	8,317	33.90
	44.5	10,108	34.76
	33.5	12,784	36.48
	$22 \cdot 4$	17,250	40.44
•	$\overline{16.8}$	20,587	45.09
	100	,,,	
	Vapour-pressure	= 22,183	
240	173.2	2,939	31.32
	152:3	3,327	31.47
	131.1	3,844	31.63
	109.8	4,552	31.90
	93.6	5,284	32.24
	77:3	6,304	32.73
	60.9	7,847	33.34
	50.0	9,380	34.02
• •	44.5	10,375	34.54
	39.0	11,606	35.21
	33.5	13,180	36.08
	28.0	15,215	37.46
	20.4	17,965	39.50
	19:6	19,674	41.26
	16.8	21,630	43.76
		23,894	47.43
	14:1	25,344	50.75
	12.4	20,544	30 73
	77	00 007	
	Vapour-pressure	= 26,227	
·			
260	173.3	3,061	31.23
	152.3	3,469	31.35
	131.2	4,006	31.52
	109.9	4,746	31.77
	93.6	5,521	32.04
	77.3	6,593	32.50
	61.0	8,228	33.02
	50.0	9,860	33.60
	44.5	10,929	34.05
	39.0	12,259	34.62
	33.5	13,977	35.34
	28.0	16,224	36.49
	$22 \cdot 4$	19,320	38.23
	19.7	21,284	39.61
	16.9	23,612	41.63
	10.9 14.1	26,509	44.39
	14.1 12.4	28,499	46.87
	11.3	29,850	49.12
	11.0	20,000	TO 1.2
	Vapour-pressure	= 36,285	

Temperature.	Volume of 1 grm.	Pressure.	Vapour-density.
0	c.es.	mms.	
279.9	173.4	3,184	31.13
	$152 \cdot 4$	3,609	31.24
	131.3	4,168	31.41
	109.9	4,943	31.63
	93.7	5,754	31.87
	77:3	6,883	32.28
	61.0	8,596	32.77
	50.0	10,342	33.22
	39.0	12,904	34.10
	33.6	14,750	34.72
	28.0	17,196	35.69
	22.4	20,581	37.21
-	19.7	22,810	38.32
	16.9	25,488	39.98
	14.1	28,886	42.25
		, , ,	

Fourth Quantity, D. The experiments with this quantity were made with the old apparatus.

Temperature.	Volume of 1 grm.	Pressure.	Vapour-density.
130	c.cs. 212·6 191·1	mms. 1,826 2,014	32·26 32·54
	184·0 176·9	2,084 2,158	$egin{array}{c} 32.66 \ 32.80 \ 33.13 \end{array}$
•	169·1 Vapour-pressure	2,236 $= 2,288$	99.19
150	$\begin{array}{c} 212 \cdot 7 \\ 191 \cdot 2 \\ 169 \cdot 2 \\ 154 \cdot 9 \\ 140 \cdot 6 \\ 126 \cdot 4 \\ 112 \cdot 2 \\ 98 \cdot 1 \end{array}$	1,940 2,147 2,402 2,607 2,847 3,134 3,484 3,905	31·86 32·02 32·35 32·56 32·84 33·20 33·63 34·31
	Vapour-pressure	= 4,023	
180	$\begin{array}{c} 212.9 \\ 191.4 \\ 169.3 \\ 155.0 \end{array}$	2,097 2,320 2,612 2,837	31·68 31·85 31·98 32·15
	$ \begin{array}{r} 140.7 \\ 126.5 \\ 112.3 \\ 98.2 \\ 84.3 \end{array} $	3,102 3,431 3,821 4,320 4,953	32·39 32·59 32·96 33·34 33·88
	70.5	5,809	34.53

REDUCTION AND ARRANGEMENT OF RESULTS.

Vapour-Pressures.—The vapour-pressures experimentally determined, and also those calculated by the formula $\log p = a + b\alpha^t + c\beta^t$, are given in the following table:—

Tem-				Pr	essure.			
perature.	Still method.	A.	в.	С.	D.	Mean.	Calculated.	Δp .
0	0.44			,		0.11	0.40	
0	3.44	• •	• •	• •	• •	3.44	3.49	+ .05
10	7.26	• •	• •	••	• •	7.26	7.39	13
20	14.50	• •	• •	• •	• •	14.5	14.78	28
30	27.60	••	• •	• •	• •	27.6	28.13	.53
40 50	$ 50.20 \\ 87.20 $	• •	• •	• •	• •	50·2 87·2	51.12 $ 89.00$.92
60	147·00	• •	• •	••	• •	147·0	148.97	1.80 1.97
70	239.00	• •	• •	• •	• •	$\frac{1470}{2390}$	240.44	1.44
80	376.00	• •	• •	• •	• •	$\frac{2590}{376.0}$	375:31	- 0.69
90	574·00	• •	• •	••	• •	574·0	568.11	-5.89
100	•	842.5		• •	•••	842.5	835.89	-6.61
1100	••	1206.0	• •	• •	• •	1206	1198.2	-7.8
120	• •	1683.0	• •	•••	• •	1683	1677.0	-6.0
130	••	2295.0	• •	• • •	2288	$\frac{1003}{2293}$	$\frac{10770}{2295.9}$	-0.0 + 2.9
140	• •	3074.0	• •	• • •		3074	3080.3	6.3
150	• •	4059.0	• •	4053	4023	4052	4057.1	5.1
160	• •	5264.0	• •			5264	5253.4	-10.6
170		6695.0	••	• •	• •	6695	6697.8	+2.8
180	• •	8387:0	• •	8365	• •	8383	8418.8	35.8
190	•	10466.0		0000		10466	10445	-21
200		12828.0		12691		12801	12809	+8
210		15575.0		12001		15575	15539	- 36
220		18671.0		18711		18679	18667	-12
230		22161.0	22094	22183		22154	22230	+ 76
240		26208.0	26102	26227		26194	26263	69
250		30779.0	30809			30785	30807	22
260	• •	36110.0	35955	36285		36103	35908	_ 195

In calculating the mean the greatest weight has always been given to the determinations with the largest quantity, A. The constants employed were calculated from pressures at 20°, 80°, 140°, 200°, and 260°. The constants for the formula are—

$$a=4.479370.$$
 $\log b=\overline{1.3915059}.$
 $\log c=0.5509601.$
 $\log \beta=\overline{1.99657025}.$
 $c \text{ is negative.}$
 $\log \beta=0.001641423.$

Determinations of the vapour-pressures of propyl alcohol by the statical method are given by Konowalow. They are reproduced in the following table, together with the pressures calculated from our constants for Bior's formula. It is to be noticed that our results at these temperatures were obtained by the dynamical method.

Series I.

	Press	sure.		Pressure.			
Temperature.	Konowalow observed.	R. and Y. calculated.	Temperature.	Konowalow observed.	R. and Y. calculated.		
0		A STATE OF THE PARTY OF THE PAR	0	The second secon			
11.50	8.1	8.2	59.40	143.25	144.6		
16.80	10.0	11.9	59.90	146.90	148.3		
21.80	17.2	17.1	70.40	245.80	$245\ 0$		
28.35	24.7	25.4	74.90	304.20	300.3		
30.60	29.5	29.2	80.50	384 10	383.5		
33.75	35.7	35.4	81.75	405.20	404.7		
39.10	48.3	48.5	81.90	406.40	407.2		
49.20	85.3	85.3	89.60	561.70	$559 \cdot 3$		
52:35	101.0	100.9	98 60	794.90	793.4		

SERIES II.

	Pressure.					
Temperature.	Konowalow observed.	R. and Y. calculated.				
° 16:5	10:9	11:65				
$\begin{array}{c} 10.5 \\ 52.4 \end{array}$	101.1	101.10				
59·9 70·5	148.5	148.30				
70·5 82·1	$\begin{array}{c} 247 \cdot 7 \\ 411 \cdot 4 \end{array}$	$246.10 \\ 410.60$				

It will be seen that, with the single exception of the observation at 16°8 in Series I., the agreement is extremely satisfactory. The vapour-pressures have also been determined by Dr. A. RICHARDSON by our method ('Chem. Soc. Trans.,' vol. 49, p. 763) with concordant results.

Orthobaric Volumes of 1 Gram of Liquid.

Tempera- ture.	Volume.	Specific gravity.*	Tempera- ture.	Volume.	Specific gravity.	Tempera- ture.	Volume.	Specific gravity.
0	c.cs.		0	c.cs.		0	c.cs.	
0	1.221	0.8193	100	1.365	0.7325	200	1.689	0.5920
10	1.233	0.8110	110	1.385	0.7220	210	1.750	0.5715
20	1.245	0.8035	120	1.406	0.7110	220	1.823	0.5485
30	1.256	0.7960	130	1.430	0.6995	230	1.912	0.5230
40	1.270	0.7875	140	1.455	0.6875	240	2.032	0.4920
50	1.285	0.7785	150	1.484	0.6740	250	2.210	0.4525
60	1.299	0.7700	160	1:515	0.6600	260	2.561	0.3905
70	1.314	0.7610	170	1.550	0.6450	263.15	2.899	0.3450
80	1.330	0.7520	180	1.591	0.6285	263.50	2.959	0.3380
90	1.347	0.7425	190	1.637	0.6110	263.54	3.012	0.3320

^{*} As in our former memoirs, the specific gravities are referred to water at 4°, and are therefore true masses of one cubic centimetre.

Orthobaric Volumes of 1 Gram of Vapour.

Tempera- ture.	Volume of 1 grm.	Specific gravity (mass of 1 c.c.).	Vapour- density.	Tempera- ture.	Volume.	Specific gravity.	Vapour- density.
\$0 90 100 110 120 130 140 150 160	0.cs. 958·0 643·0 443·0 312·0 225·0 165·0 124·0 93·9 72·3	0·00104 0·00156 0·00226 0·00320 0·00443 0·00605 0·00805 0·01060 0·01380	30·50 30·90 31·30 31·80 32·40 33·00 33·70 34·50 35·45	180 190 200 210 220 230 240 250 260	c.cs. 44·50 35·40 28·30 22·65 18·00 14·21 11·06 8·50 6·20	0·0225 0·0282 0·0353 0·0442 0·0556 0·0704 0·0904 0·1180 0·1610	37·6 38·9 40·5 42·7 45·6 49·5 54·9 62·1 74·4

The following table gives the densities of the unsaturated vapour at equal intervals of temperature and pressure.

Pressure.	Temperatures.											
	130°	150°	180°	200°	220°	230°	240°	250°	260°	263°.64	270°	280°
mms.						-						
2,000	32.49	31.95	31.59	31.33	31.11	30.99	30.93		30.80		• •	30.70
4,000		34.41	33.06	32.46	32.04	31.86	31.71	١	31.50			31.32
6,000			34.80	33.75	33.02	32.76	32.52		32.16			31.89
8,000			37.02	35.19	34.17	33.73	33.39		32.90			32.50
10,000				37.11	35.43	34.86	34.38		33.66			33.12
12,000				39.42	36.93	36.16	35.50		34.51			33.78
14,000					38.85	37.74	36.84		35.48			34.47
16,000					41.26	39.63	38.41	37.44	36.51		35.86	35.23
18,000					44.40	41.97	40.23	38.89	37.72		36.84	36.06
20,000						45.00	42.30	40.47	39.00		37.89	36.97
22,000						48.99	44.94	42.33	40.51		39.10	38.02
24,000							48.42	44.70	42.25		40.48	39.15
26,000							53.76	47.70	44.28		42.03	40.41
28,000	• •							51.66	46.62		43.83	41.82
30,000				١				57.90	49.80		46.02	43 38
32,000				l					54.66	51.90	48.72	45.24
34,000									61.80	56.97	52.11	47.43
36,000	••				::	l				64.32	56.40	50.01
38,000		::			::	::					62.64	53.16
40,000		1		::				::	::		0201	57.12
42,000			•••	::	::					7.		62.40

Heats of Vaporization.

The heats of vaporization are calculated from the thermo-dynamical formula,

$$\frac{\mathbf{L}}{s_1 - s_2} = \frac{dp}{dt} \cdot \frac{t}{\mathbf{J}} \cdot$$

The values of dp/dt were calculated in the same manner as with the other liquids. The pressures for one-tenth of a degree above and below the required temperature were calculated by means of the equation $\log p = a + ba^t + c\beta^t$, and the difference was multiplied by 5 to obtain the value for 1°. The pressures were reduced to grams per square centimetre, and the value of J was taken as 42,500.

Tempe	erature.	dp	/dt	$s_1 - s_2$	\mathbf{L}_{ullet} .	
° C.	° Abs.	mms.	grms.	c.es.	cals.	
80	353	15.99	21.7	957.00	173.0	
90	363	22.73	30.9	642.00	169.0	
100	373	31.16	42.4	442.00	164.0	
110	383	41.70	56.7	311.00	159.0	
120	393	54.45	74.0	224.00	153.0	
130	403	69.75	94.8	164.00	147.0	
140	413	87.60	119.1	123.00	$142 \cdot 4$	
150	423	108.20	147.1	92.40	135.3	
160	433	131.50	178.8	70.80	129.0	
170	443	157.80	214.5	54.90	122.8	
180	453	187.00	254.2	42.90	116.3	
190	463	219.00	297.7	33.80	109.6	
200	473	254.00	345.3	26.60	$102 \cdot 2$	
210	483	292.50	397.7	20.90	94.5	
220	493	334.00	454.0	16.20	85.3	
$\frac{1}{230}$	503	379.00	515.0	12:30	75.0	
$\frac{240}{240}$	513	428.00	582.0	9.03	63.4	
$\frac{250}{250}$	523	481.00	654.0	6.29	50.6	
$\frac{260}{260}$	533	540.00	734.0	3.64	33.5	

The heat of vaporization of propyl alcohol at the boiling-point 97° 4 would be 165 2 calories.

Pressures and Temperatures of Propyl Alcohol at Definite Volumes.

In our previous papers we have given tables of the volumes of a gram of substance at definite temperatures and pressures.

We have recently shown, however, in two papers read before the Physical Society of London and published in the 'Philosophical Magazine' (May and August, 1887), that, when the volume of a stable liquid or gas is kept constant, a very simple relation exists between the pressure and the absolute temperature, which is expressed by the equation

$$p = bt - a,$$

where p is the pressure, t the absolute temperature, and b and a are constants depending on the substance and on the volume occupied by a gram of it.

We have, therefore, considered it better to construct lines of equal volume or "isochors," and to read temperatures and pressures from the isochors, rather than to read the volumes of a gram from isobars constructed from the isotherms.

Owing to the directions assumed by the isochors, it is most convenient to give

temperatures (Centigrade) at definite pressures for volumes below the critical volume, and pressures at definite temperatures for larger volumes.

Volumes Smaller than Critical Volume.

			· · · · · · · · · · · · · · · · · · ·								
				P	ressure in	metres of	mercury.				
Volume.	5	10	15	20	25	30	35	40	45	50	55
1.26	32.40	33.05	33.70	34 35	35.00	35.70	36.35	37.00	37.65	38:30	39.00
1.28	48.10	48.80	49.50	50.20	50.90	51.60	52.30	53.00	53.70	54.40	55.10
1.30	62.80	63:55	64.30	65.05	65.80	66.30	67.05	67.80	68.55	69.30	70.00
1.32	75.40	76.20	77.00	77.75	78.55	79.30	80.10	80.90	81.65	82.45	83.20
$\frac{1.32}{1.34}$	87.55	88.35	89.15	90.00	90.80	91.65	92.45	93.25	94.10	94.90	95.75
1.36	98.85	99.70	100.55	101.40	102 30	103.15	104.00	$\frac{9525}{104.85}$	105.60	106.50	107.35
1.38	109.00		110.80							117.10	
$\frac{1.38}{1.40}$		109.90	120.80	111.70	112.60	113.50	114.40	$115.30 \\ 125.05$	116.20	126.95	118.00
	118.40	119.35		121.25	122.20	123.15	124.10		126.00		127.90
1.42	127.05	128.05	129.05	130.05	131.05	132.05	133.05	134.05	135.05	136.05	137.05
1.44	134.75	135.80	136.85	137.90	138.90	139.95	141.00	142.05	143.10	144.10	145.15
1.46	142.00	143:10	144.20	145.25	146.35	147.40	148.50	149.60	150.65	151.75	152.80
1.48	148.55	149.70	150.85	151.95	153.10	154.20	155.35	156.50	157.60	158.75	159.85
1.50	••	155.85	157.05	158.20	159.40	160.55	161.75	162.95	164.10	165.30	166.45
1.52		161.85	163.10	164.30	165.55	166.75	168.00	169.25	170.45	171.70	172.90
1.54	• • •	167:35	168.60	169.90	171.15	172.45	172.70	174.95	176.25	177.50	178.80
1.56		172.40	173.70	175.05	176.35	177.70	179.00	180.30	181.65	182.95	184.30
1.58		177.30	178.70	180.05	181.40	182.80	184.20	185.55	186.95	188.30	189.70
1.60			183.15	184.55	186.00	187.40	188.85	190.30	191.70	193.15	194.55
1.62			187.65	189.10	190.60	192.05	193.55	195.05	196.50	198.00	199.55
1.64	·		191.95	193.45	195.00	196.50	198.05	199.60	201.10	202.65	204.15
1.66			195.50	197.05	198.65	200:20	201.80	203.40	204.95	206.55	208.10
1.70			202.40	204.10	205.80	207.50	209.20	210.90	212.60	214.30	216.00
1.75			209.80	211.65	213.45	215.30	217.15	219.00	220.85	222.65	224.50
1.80				218.05	220.00	222.00	224.00	226.00	228.00	229.95	231.95
1.85		::	::		225.75	227.85	230.00	232.15	234.30	236.45	238.55
1.90					230.60	232.90	235.20	237:50	239.80	242.10	244.40
1.95	•••	••	••	-		237.00	239.50	241.95	244.40	246.90	249.35
2.00	••	• • •		•••		240.60	243.25	245.90	248.55	251.20	253.80
$\frac{2.00}{2.10}$	•••	• •	• • •		•••		248.80	251.80	254.80	257.80	260.80
$\frac{2.10}{2.20}$	• •	• • • • • • • • • • • • • • • • • • • •	•••	• • •		••	ĺ	256.10	259.50	262.90	266.30
2.30	• • •	• • •		•••		••	••	259.40	263.25	267.05	270.90
2.40	•••		••	• •		• •	••	261.70	266.00	270.25	274.55
				• •	• •	•••	• • •				
2.50	• •	• •	••	•••		• •	••	263.20	267.95	272.75	277.50
2.60		•••		•••	•••	• •	• •	264.30	269.40	274.50	279.60
2.70		• • •		••			••	265.25	270.45	275.60	
2.80			•••	••		•••		265.90	271.40	277.00	
2.90			• •				• • •	266.00	272.00	278.10	1
3.00				1	1	1		266.10	272.60	279.15	1

It is, however, possible to give a few pressures at even volumes and temperatures, and these, and also the pressures in the following table for volumes up to 30 c.cs. are represented by crosses in the plates (Plate 3 and 6).

Volumes Larger than Critical Volume.

	Temperature.											
Volume.	130°	150°	180°	200°	220°	230°	240°	25 0°	260°	263°·64	270°	280°
c.cs.	Made and the second second						-					
3		• • •			• •	••				38,120	43,000	50,660
4	••			• •	••	••				38,120	41,680	47,280
5					• •	• •				37,960	40,850	45,380
6	• • •			••	• • •	•••				37,280	39,610	43,280
7		• • •							35,190	36,280	38,190	41,200
8	• •			• •					34,000	34,940	36,580	39,150
9				• •	• • •		• •	30,390	32,650	33,480	34,920	37,180
10	• •					• • •		29,430	31,360		33,300	35,230
12	• •			• •			25,710	27,270	28,820		30,380	31,940
14						• • •	23,910	25,190	26,470		27,776	29,040
16	• •					21,130	22,220	23,310	24,390		25,480	26,570
18						19,800	20,730	21,660	22,580		23,510	24,440
20					17,660	18,480	19,310	20,130	20,950		21,780	22,600
25					15,340	15,940	16,540	17,150	17,750		18,350	18,950
30				12,474	13,430	13,910	14,390	14,860	15,340		15,820	16,300
40				9,998	10,656	10,985	11,314		11,972	١		12,630
50			7,780	8,299	8,818	9,078	9,337		9,856			10,375
60			6,695	7,109	7,523	7,730	7,937		8,351			8,765
80			5,210	5,504	5,798	5,945	6,092		6,386			6,680
100		3,898	4,252	4,488	4,724	4,842	4,960		5,196			5,432
120		3,321	3,606	3,796	3,985	4, 080	4,175		4,365			4,555
140		2,876	3,120	3,283	3,447	$3,\!528$	3,610		3,772			3,935
170	2,258	2,391	2,590	2,724	2,857	2,923	2,990		3,122			3,255
200	1,955	2,063	2,224	2,332	2,439	2,493	2,547		2,654	1		2,762

These pressures agree very well with those read directly from the isotherms, except near the condensing point at low temperatures, and to a much smaller extent at high temperatures. The greatest error is at the lowest pressure at 150°, and amounts to 1.45 per cent.

The approximate critical temperature of propyl alcohol is 263°7, the approximate critical pressure 38,120 mms., and the approximate volume of 1 grm. 3.6 c.cs. first two of these constants must be very nearly correct; the third cannot be determined with nearly the same accuracy.

ADDENDUM.

(Added February 11, 1889.)

The conclusions of Konowalow (loc. cit.) regarding the nature of the so-called hydrate of propyl alcohol have been fully confirmed. It was found that the composition of the mixture, which boiled constantly under a pressure of 198.7 mms., differed from that obtained under the ordinary atmospheric pressure; the lower the pressure, the higher is the percentage of water in the distillate.

The boiling-points of four different samples of the mixture were determined under pressures varying from 746 to 762 mms.; corrected to 760 mms., the temperatures observed were 87°.65, 87°.85, 87°.9, and 87°.6—mean 87°.75.

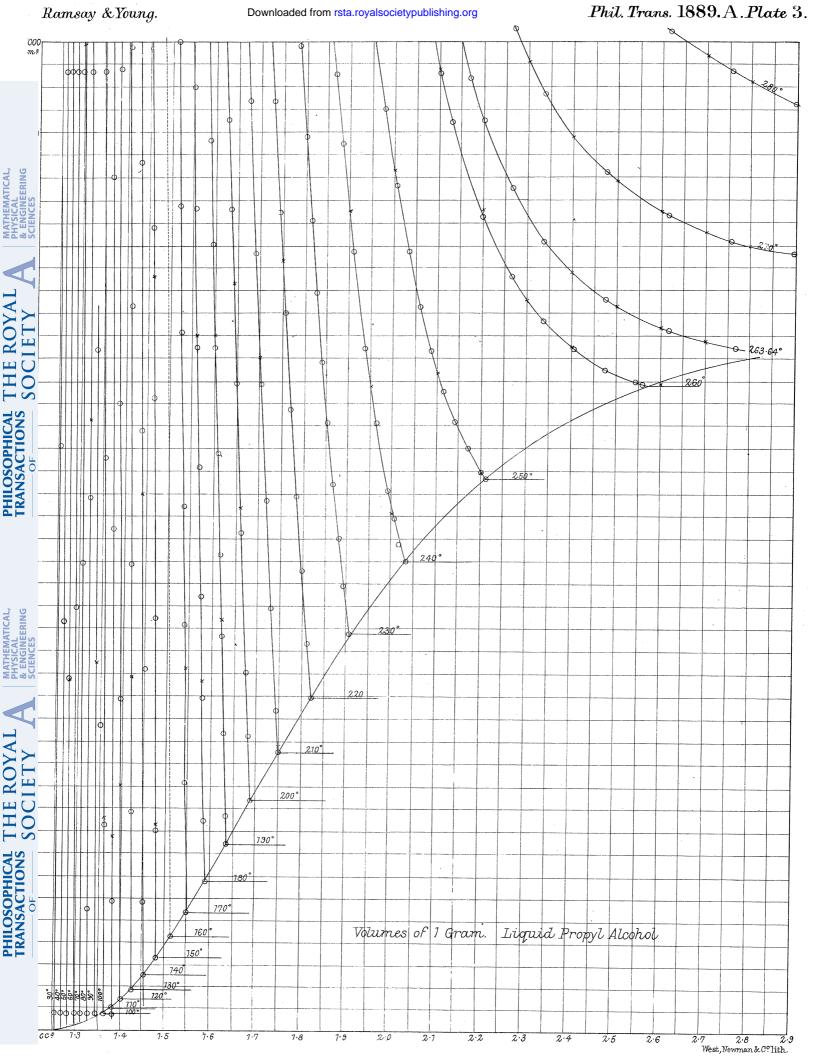
The vapour-pressures were determined by both the dynamical and statical methods, with the following results:

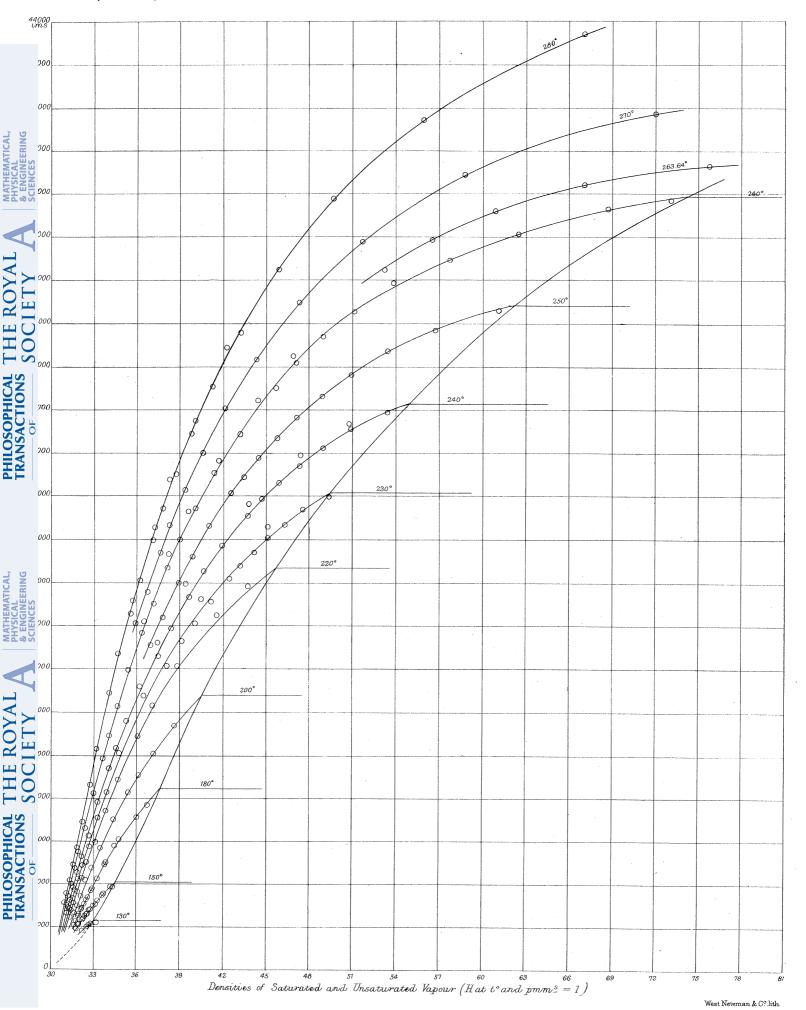
Dynamical Method.

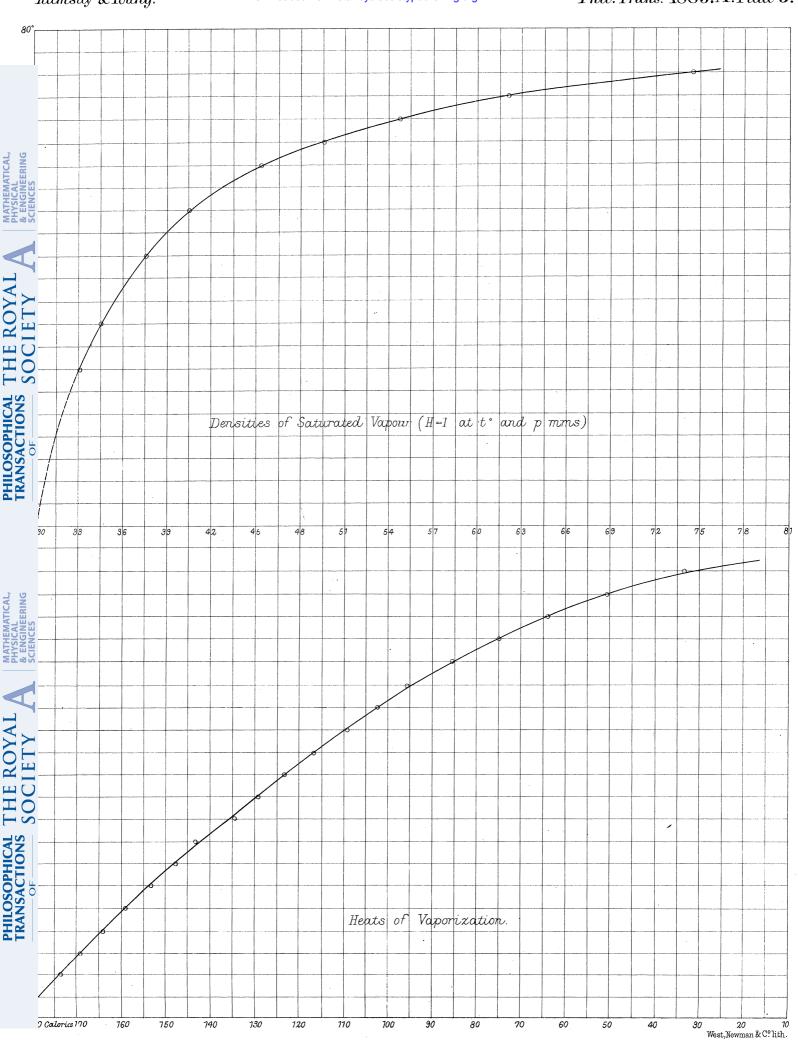
Pressure.	Temperature.	Pressure.	Temperature.	Pressure.	Temperiture
mms.	0	mms.	0	mms,	0
5.75	- 0.9	38.9	27.4	269.8	63.5
6.75	+ 1.25	46.0	30.2	304.3	66.1
8.15	4.1	57.1	33.6	347.9	69.1
9.0	5.5	66.8	36.3	358.7	69.8
9.2	5.85	78.9	39.2	405.7	72.6
10.1	7.2	92.55	42.2	$466 \cdot 4$	75.9
12.55	9.8	109.5	45.3	526.6	78.9
15.8	13.3	123.5	47.65	590.9	81.9
19.05	16.1	143.7	50.5	658.8	84.5
22.75	18.7	167.4	53.6	760.6	87.9
$\frac{-7.55}{27.55}$	21.7	200.6	57.4		0.0
32.75	24.6	232.0	60.3		

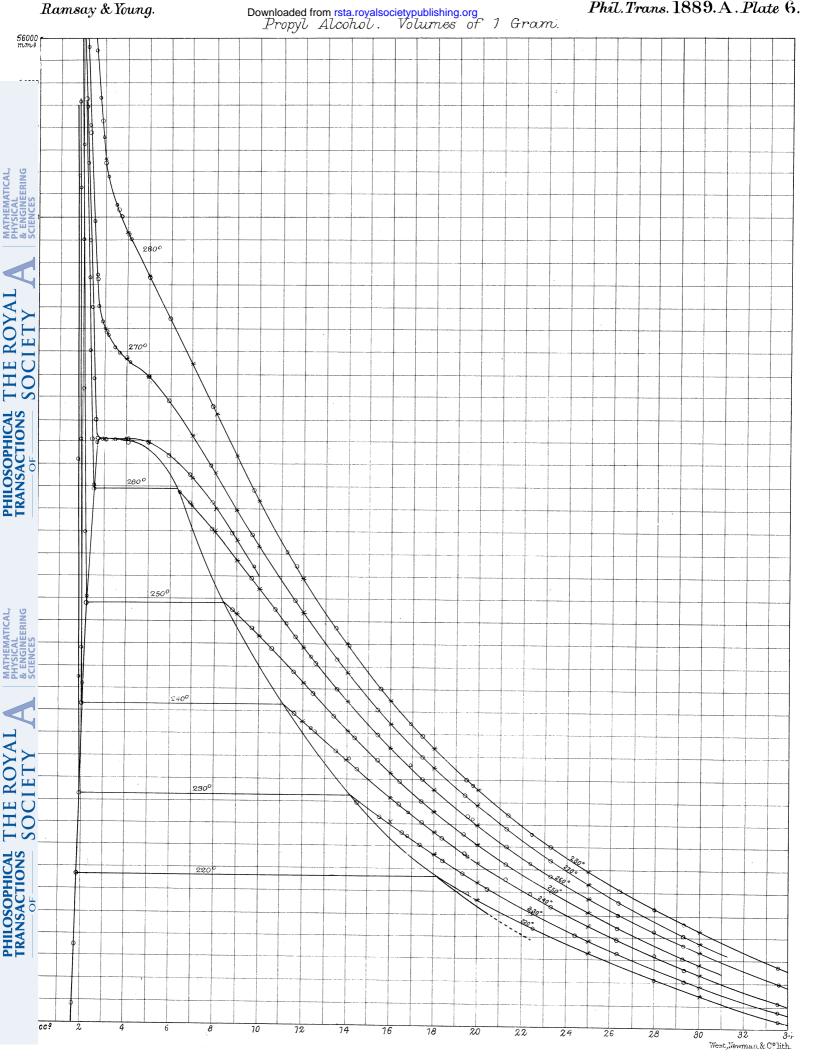
Statical Method.

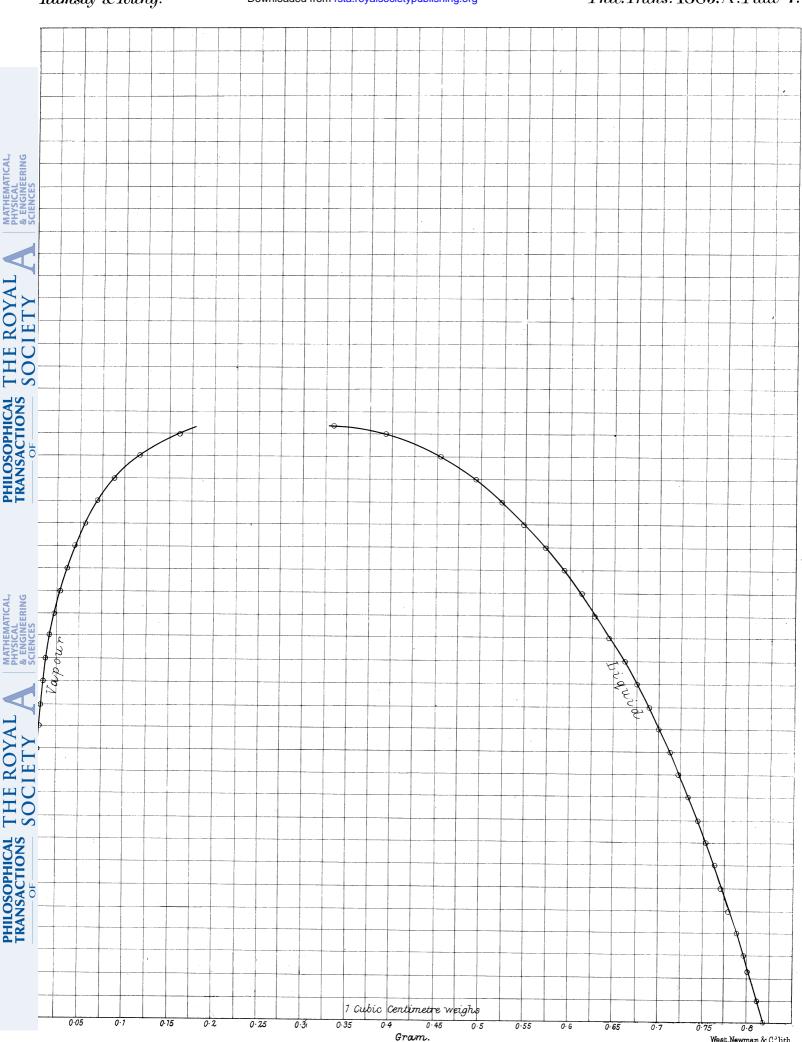
Temperature.	Pressure.	Pressure read from curve constructed from results by dynamical method.		
0	mms.	mms.		
13.3	16.6	15.7		
15.1	$18\cdot 2$	17.7		
15.7	19.2	18.45		
25	35.5	33.8		
30	47.9	45.4		
40 *	83.8 and 83.95	81.1		
50	$142\cdot 1$	138.9		
60	231.7	226.5		
70	365.4	361.5		
75	452.7	450.0		


^{*} The following pressures were also observed at 40° in the vapour-density tube: -83.5, 82.35, 82.55, 82.25,


It will be seen that the results by the statical method are uniformly a very little higher than by the dynamical method. The behaviour of the substance resembles that of an imperfectly purified stable substance more closely than that of a dissociating body.


A considerable number of determinations of vapour-density were made under varying conditions of temperature and pressure. It was proved, however, that condensation—probably of water—took place on the sides of the tube, and the results at the same temperature and pressure could be made to vary considerably by altering the conditions in such a manner as to increase or diminish the chance of such condensation taking place. The rise of vapour-density at low temperatures or high pressures was in no case greater than could be accounted for by premature condensation of liquid, and the only conclusion to be drawn from the results is that combination of propyl alcohol and water does not take place in the gaseous state.


The contraction on mixing propyl alcohol and water at 0°, in the ratio of 71.46 per cent. of alcohol to 28.54 of water, was ascertained by determining the specific gravities of the alcohol and of the mixture, that of water being known. 1 grm. of the mixture the contraction was 0.0215 c.c., or 1.857 per cent. With ethyl alcohol and methyl alcohol the contraction is considerably greater.


It may be stated, in conclusion, that we have obtained no experimental evidence of chemical combination between propyl alcohol and water.

